
The Hardness of Approximating Minima in
OBDDs, FBDDs and Boolean Functions

S. A. Seshia R. E. Bryant

August 2000

CMU-CS-00-156

n.PT^,r,, it)OH STATEMENT A School of Computer Science
DiS I *^\{£**J£C Release Carnegie Mellon University

^SnbuSonUnHmited Pittsburgh, PA 15213

20000926 026
Abstract

V

This paper presents approximation hardness results for three equivalent problems in Boolean func-
tion complexity. Consider a Boolean function / on n variables. The first problem is to minimize
the level i in the Ordered Binary Decision Diagram (OBDD) for / at which the number of nodes is
less than 21-1. We show that this problem is not approximable to within the factor 2log n, for any
e > 0, unless NP is contained in RQP, the class of all problems solvable in random quasi-polynomial
time. This minimization problem is shown to be equivalent to the problem of finding the minimum
size subset S of variables so that / has two equivalent cofactors with respect to the variables in
S. Both problems are proved equivalent to the analogous problem for Free BDDs, and hence the
approximation hardness result holds for all three.

This research is sponsored in part by the National Science Foundation, Award Number CCR-9805366.
The first author is supported in part by a National Defense Science and Engineering Graduate Fellowship.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright annotation thereon. The views and conclusions contained in this document are those of
the authors, and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Department of Defense or the U.S. Government.

miß QUALITY W®Wm$D 4

Keywords: Approximation algorithms, Complexity Theory, Approximation hardness, Binary De-
cision Diagrams, Coding Theory, Trellises.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs) are directed acyclic graphs that form canonical repre-
sentations of Boolean functions [3]. The OBDD is a widely used data structure in Computer-Aided
Design and Verification. The size of the OBDD depends on the order in which variables are tested.
The problem of finding a variable ordering that minimizes the size of an OBDD is known to be
NP-complete [2]. This problem is also known to be inapproximable to a constant factor, unless
P=NP [7].

This paper takes a step further in studying the approximability of the OBDD minimization
problem. We show the approximation hardness of the following related problem. Consider an

v OBDD for a Boolean function / on n variables. We wish to find a variable ordering that minimizes
the level i at which the number of nodes is less than 2!_1, the maximum possible number. The
decision version of this problem has already been proved NP-complete [6].

This is an interesting problem because it indicates the first level at which the OBDD stops
being a complete binary tree. For example, suppose that for an instance of this problem the answer
is found to be n/c (where n is the number of variables and c is a constant greater than 1). This
indicates that the size of the OBDD corresponding to that instance is exponential in n. This is one
way of proving an exponential lower bound on the size of the OBDD for a Boolean function (or a
family of Boolean functions). On the other hand, if the answer to this problem is a small constant,
we cannot conclude much since it is still possible for the OBDD to grow exponentially beyond that
level. We will refer to this problem hereafter as the "OBDD level minimization" problem.

Our proof of approximation hardness is based on the connection recently made by Lafferty and
Vardy between OBDDs and minimal trellises from coding theory [6]. Their result states that the
minimal proper trellis for a binary linear code C of minimum distance greater than one is essentially
the same as the OBDD representing the characteristic function of the code C. It follows that for
binary linear codes of minimum distance greater than one, the OBDD level minimization problem
that is the subject of this paper is the same as the problem of finding the minimum level i in a
minimal trellis that has less than 2Z~1 nodes. We refer to the latter problem as the "trellis level
minimization" problem.

Our work also relies on two other recent results. In a 1997 paper [8], Vardy proved the NP-
completeness of the problem of finding the minimum distance of a linear code. He also outlined
a polynomial-time reduction to the trellis level minimization problem from the minimum distance
problem. In another paper [5], Dumer, et al. show that the minimum distance problem cannot be
approximated to within a factor of 2log n, for any e > 0, unless NP is contained in RQP, the class
of problems solvable in random quasi-polynomial time.

The factor 2 s n occurs naturally in the theory of approximation hardness, and is character-
1 istic of a whole class of problems, as noted in the survey by Arora and Lund [1]. Moreover, the

function ip(n) = 2log '" almost equals n for small values of e; e.g., for e = 0.001, ^(1000) = 984.3.
v'V Thus, this is a far more significant factor of inapproximability than a constant factor. For the

OBDD level minimization problem addressed in this paper, the size of this factor means that even
if the minimum is small, say 2 or 3, we cannot find a reasonable approximate answer in polynomial
time - the best we can do is n. In other words, we can derive no more information about the
minimum than what we already have.

On the other hand, the assumption NP <jL RQP is a stronger assumption to make than P ^ NP.
A quasi-polynomial function is one that grows slower than 2los n for some constant c. NP C RQP
means that every problem in NP has a probabilistic algorithm that runs in time quasi-polynomial in
the input size, and that always rejects No instances and accepts YES instances with high probability.

As in the case of the P = NPI question, it is generally believed that NP <J- RQP.
This paper makes the following contributions. First, we show that Vardy's reduction to the

trellis level minimization problem preserves approximation hardness to within a factor of 2 s ".
This coupled with Lafferty and Vardy's result shows the approximation hardness, with the same
factor, of the OBDD level minimization problem. Secondly, we show that the OBDD level mini-
mization problem is equivalent to the problem of finding the minimum size subset S of variables so
that the Boolean function (represented by the OBDD) has two equivalent cofactors with respect to
the variables in ,S'. Thus, the same approximation hardness result carries over to this problem as
well. Finally, we show that the approximation hardness result also extends to a BDD variant called
the Free BDD (FBDD), in which the ordering of variables can be different along different paths.

The rest of this paper is organized as follows. We define the problem and state background
results in Section 2. Preservation of inapproximability is shown in Section 3. Equivalences are
proved in Section 4. Finally, we make concluding remarks in Section 5.

2 Definitions and Background

2.1 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a directed acyclic graph that forms a canonical
representation of a Boolean function /(.ri, x2 .r„). Each non-leaf node in the OBDD represents
a binary test on an input variable x;, and has two outgoing edges labeled 0 and 1, representing
the result of the test. There are two leaf nodes labeled 0 and 1. All paths in the graph go from a
designated root node to one of the leaf nodes. The order in which variables are tested along a path
is the same for all paths. A path leading to the 0 (1) leaf node represents an assignment to input
variables on which / evaluates to 0(1). There are no isomorphic subgraphs in an OBDD. Further
details on BDDs can be found in the survey by Bryant [4].

We can formally define the OBDD level minimization problem as follows:

Definition 1 OBDD level-Minimization (i-BDD)
Instance: A Boolean function f(xi,x2,...,xn) specified in terms of a representation of size

polynomial in n. Let iij be the number of nodes at level j.
Problem: To find ein ordering of x\, x2...., xn to minimize the level i of the corresponding

OBDD eit which m < 2'-1 first holds.

2.2 Binary Linear Codes and Minimal Trellises

A binary error-correcting code C of block length r? is a collection of strings(codewords) from T2 —

{0,1}". The Hamming distance ("distance") between two strings ,r, y G T2, denoted d(x,y), is the
number of positions in which .r and y differ. The Hamming weight ("weight") of a codeword x is

d{x,Ö).
A binary code is linear if it is a linear subspace of T2. For such a code, the minimum distance

between any two codewords is the same as the weight of the minimum weight codeword. We call
a linear code of block length n, dimension k and minimum distance d, a [n,k,el] linear code. An
[n, k, d] linear code can be seen as the row-space of a k X n generator matrix or the null-space of a
(n — k) x n parity-check matrix. The code C'1 generated by the parity-check matrix of C is called
the dual code of C. The minimum distance of C1 is denoted by d1.

We now define the minimum distance problem:

Definition 2 Minimum Distance (MD)
Instance: A binary (n — k) X n parity-check matrix H.
Problem: Find a nonzero vector x € T% of minimum weight w, such that Hxf = 0.

The minimal trellis is a directed acyclic graph that represents a code. All edges are labeled
either 0 or 1. All paths in the trellis go from a designated start node (root) to a designated end
node (toor). Each path from the root to the toor corresponds to a codeword; the codeword being
read off as the edge labels along the path. The time-axis of the trellis is the sequence in which
levels (numbered 1 to n)1 appear from root to toor. The number of nodes at each level in the
minimal trellis for a binary linear code is a power of 2. Further details about trellises can be found
in Vardy's survey [9].

The level minimization problem for minimal trellises is defined as follows:

Definition 3 Trellis level-Minimization (TM)
Instance: The binary k X n generator matrix G of a binary linear code.
Problem: Let T be the corresponding minimal trellis with rij nodes at level j. Let Sj = log2 rij.

We wish to find the minimum level i < n of T (by reordering the levels), such that S{ < i — l(or
equivalently, s; < i — 2).

The decision version of TM has been proved NP-complete [6].

2.3 Approximation Algorithms and Hardness

Definition 4 An algorithm A is an a-approximation algorithm for an optimization problem II if
1. A runs in polynomial time
2. A always produces a solution which is within a factor of a of the value of the optimal solution.

The factor a is called the performance ratio. For minimization problems, a > 1.
For some optimization problems, approximating the optimal solution to a guaranteed factor of

a can be shown to be NP-hard. Proving the NP-hardness of approximating a problem II involves
giving a special kind of reduction to II from an NP-complete problem; the reduction must produce a
gap in the value of the optimum for II. Such a reduction is said to be a gap-producing reduction [1].
For example, suppose we want to prove the NP-hardness of approximating a minimization problem
II to within a factor g. We can do this by producing a gap-producing reduction from SAT to II
that maps satisfiable formulae to instances whose solution is of value at most c (for some c), and
unsatisfiable formulae to instances with solutions of value at least gc (see figure 1).

To see how this works, assume II had a polynomial time approximation algorithm An that
guaranteed a factor g* < g. Consider an arbitrary satisfiable formula; this will map to an instance
whose optimum is < c. Therefore, on this instance of II, An would return an answer x, where x <
g*c < gc. Now, we know that any unsatisfiable formula will map to an instance of II with optimum
greater than gc; furthermore, An can only return an answer greater than gc for this instance. This
means that we can correctly conclude in polynomial time that the formula is satisfiable, and this
works for an arbitrary satisfiable formula. In other words, we can solve SAT in polynomial time,
which in turn implies that P = NP! Therefore, assuming P ^ NP, II is hard to approximate to
within a factor of g.

The above method of proving approximation hardness of II uses a reduction from a known
NP-complete problem. It is sometimes desirable to have a mechanism that allows us to conclude

'Note that levels in a trellis are typically numbered 0 to n — 1, but we number them from 1 to n to be consistent
with the convention used with OBDDs.

n IT

SAT

YES^

NO

< c

>gc

>
> g'c'

s = r.r

Figure 1: Gap Preserving and Producing Reductions

the approximation hardness of a problem IT, given the approximation hardness of a problem T\,

instead of having to find a mapping from an NP-complete decision problem to IT. This is achieved

using the notion of a gap-preserving reduction.

Definition 5 Gap-Preserving Reduction: [1] Let W and W be two minimization problems. A
gap-preserving reduction from U to W with parameters (e\g), (c'.g') (g.g' > 1) is a polynomial
time algorithm f. For each instance I ofU. algorithm f produces an instance V = /(/) o/IT. The

optima of I and I', denoted Oj and Or respectively, satisfy the following two properties:

Oj <c => Ot> < c'

Oi > gc => Or > g'c'

(1)

(2)

Suppose we have a gap-producing reduction r from SAT to n. The existence of a gap-preserving
reduction r' from n to IT proves the existence of a gap-producing reduction s from SAT to IT; s is
the composition of r and r'. In other words, the reduction .? shows that achieving a performance
ratio of g' for IT is NP-hard. Figure 1 clarifies this concept.

Note however, that the gap-preserving property of a reduction does not suffice for exhibiting
the ease of approximating n given that IT is easy to approximate.

By Lafferty and Vardy's result, we know that i-BDD is the same problem as TM for codes
of minimum distance greater than one. Thus, we can extend the approximation hardness result of
MD to one for i-BDD by proving that the reduction from MD to TM is gap-preserving. This

proof is the subject of the next section.

3 Gap-preserving Reduction

We first reproduce Vardy's reduction from MD to TM , and then prove that the reduction is
gap-preserving. Our proof relies on the following lemma, whose proof may be found in [9].

Lemma 1 Trellis Complexity and Minimum Distance: [9] Let C be an [n,k,d] linear code

over jFq and let d1- denote the minimum distance of the dual code C1. Then, under all possible
permutations of the time axis of the minimum trellis for C', we have.

Sj = i - 1, V; = 2,..., min(d, dL) (3)

Furthermore, if i > min(d,d-L), there exists at least one permutation of the time axis for which

Si < i — 1.

4

We reproduce Vardy's reduction of MD to TM below. The details of various code constructions
in the reduction have been preserved for completeness; note however, that the only things in the
reduction relevant to the proof of gap-preservation are the minimum distances of the initial and
final codes.
Reduction of MD to TM: [9]
Let C be the [n, k, d] binary linear code whose minimum distance d we want to determine. Given
the parity-check matrix H of C, we construct a binary linear Reed-Muller code C" of length 2m

and order r, where m = 2("log2 n] + 1 and r = [log2 n]. This code C is a [n', k', d1] self-dual code,
where, ri = 22TloS2«-"i+i < 8n2, k' = n'/2 < An2 and d' = 2m~r = 2^2"1+1 > 2n.

The Kronecker product construction is used to obtain a generator matrix for the product code
C* = CL®C, where C1- is the dual code of C. Then, the length of C* is n* = nri < 8n3, and the
minimum distance d* = dLd' > 2nd1- > n > d. Finally, the dual distance of C* is the minimum of
the dual distances of Cx and C. Thus, d* = min(d,d') = d. Therefore, min(d*,d*) = d* = d.

Thus, to find d, we solve TM for the minimal trellis corresponding to C*.

Proposition 1 The reduction from MD to TM is gap-preserving.

Proof: Let IMD denote an instance of MD , and let ITM denote the corresponding instance of TM
obtained by the preceding reduction. Let OMD denote the optimum for IMD and OTM that for
ITM-

To prove the first property of gap-preservation, let us assume OMD — d < c. Let c' — c+ 1. We
claim that OTM < c'• To see this, consider the trellis corresponding to the code C*, and consider
i such that d < i < c'(such an i always exists by our choice of c'). By lemma 1, there must exist
a permutation of the time axis such that S{ < i — 1. Therefore, OTM < c', and the first property
holds.

Now, we prove the second property. Choose g = 28 and g' = 8 for S > 1. Let OMD = d > eg.
As before, c' = c + 1. We want to show that OTM > c'g', or in other words, that s4- = i — 1 for
all i < c'g'. By lemma 1, st- < i — 1 only if i > d + 1 > eg -f 1 = 2c8 + 1 > c8 + 8 = c'g'. Hence,
OTM > c'g', and the second propertj' holds as well.

Thus, OMD < c implies OTM < c+ 1, and OMD > c(28) implies OTM > (C+ 1)^. This shows
that the reduction is gap-preserving. □

From the approximation hardness result of Dumer, et al. , we know that g = 2log '". Since
g' — g/2, ignoring constant factors in g', we can conclude that TM cannot be approximated to a
factor of 2log £™, for any e > 0, provided NP is not contained in RQP.

Lafferty and Vardy have shown that the minimal trellis is equivalent to the ordered BDD for
minimum distance d > 1. Thus, TM is equivalent to i-BDD for the case of d > 1. Since the
i-BDD problem for the case d > 1 is a special case of the problem for any d, the preceding hardness
result holds for i-BDD as well.

4 Additional Results

The approximation hardness of i-BDD can be used to show the approximation hardness of two
related problems. The first is a restatement of i-BDD as a property of Boolean functions. The
second is an extension of the result to a BDD-variant called the Free BDD. In Free BDDs (FBDDs),
the variable ordering requirement is relaxed so that the variables can appear in any order along
a path, but no variable can be tested more than once. Free BDDs are also known as "1-time
branching programs" [10]. We define both these problems here:

Definition 6 Cofactor Equivalence for a Boolean Function (CE)
Instance: A Boolean function f{x\, x2,..., x„). Let V = {.rj, x2,..., xn}.
Problem: To find a set S C V of minimum size, such that there exist assignments a,ß to

variables in S so that fa = fß. where f$ denotes the cofactor of f with respect to the assignment. 0.

Definition 7 FBDD level-Minimization (i-FDD)
Instance: A Boolean function /(.ri, .r2,..., x„) specified in terms of a representation of size

polynomial in n. Let n.j be the number of nodes at level j.
Problem: To find a FBDD representing f so as to minimize the level i at which ?*,• < 2'_I first

holds.

We now show the equivalence of i-BDD , CE and i-FDD .

Proposition 2 i-BDD and CE are equivalent.

Proof: We prove the equivalence by showing that there are < 2'-1 nodes at level / in a OBDD for
/ iff there is some subset of variables ,S' of size /, and some assignments o, ß to variables in S such

that /„ = f,3.
For the if part, note that nodes at level / in the OBDD correspond to cofactors of / with

respect to some assignment to the first / variables, and there are no duplicate nodes in an OBDD.
We construct an OBDD for / with the variables in S on the top of the order, and since 3a, ß s.t.
/„ = fß, the number of nodes at level / in this OBDD must be less than 2'-1.

For the only if part, since there are < 2'-1 nodes at level /', there must be two paths p\ and p2

from the root node to the same node AT at level •/. Variables in paths pi and p2 are not re-tested
anywhere below level /. Therefore, let S be the union of the sets of variables occurring on p\ and
P2- Then, we can pick two assignments, o and ß, over variables in 5, consistent with pi and p2. N
is the unique node that corresponds to fa and fß, and so, /0 = fß. □

Proposition 3 CE and i-FDD are equivalent.

Proof: Once again, we prove the equivalence by showing that there are < 2I_1 nodes at level /' in a
FBDD for / iff there is some subset of variables 5 of size /, and some assignments a,ß to variables
in S such that, f0 — fß.

The if part is straightforward. Every OBDD is also a FBDD. Therefore, we construct an OBDD
with the variables in S on the top of the order and the number of nodes at level / must be less than

2i_1.
For the only if part, since there are < 2'-1 nodes at level ■/, there must be two paths p\ and

p2 from the root node to some node N at level i. Now consider a variable Xj that occurs on p\
but not on p2. We claim that Xj cannot occur on any path starting at Ar. This is because if it did
occur on a path q starting at N, the test of xj on q would be redundant on the path formed by
concatenating p\ with q. This redundant test will be eliminated. Thus, the path p2 can be viewed
as if it contained both the test Xj = 0 and Xj = 1.

Let S be the union of the sets of variables occurring on p\ and p2. Then, we can pick two
assignments, o and ß, over variables in S, consistent with p\ and p2. N is the unique node that
corresponds to fa and fß, and so, f0 = fß. □

Since i-FDD and CE are equivalent to i-BDD , both problems cannot be approximated to a
factor of 2'°s1_£n, for any e > 0, provided NP % RQP.

5 Discussion

In this paper, we have used the inapproximability result for the minimum distance problem for linear
codes to show the approximation hardness of the problem of minimizing the level in an OBDD at
which the number of nodes first falls below the maximum possible. The inapproximability is to a
factor of 2log n under the condition that NP is not contained in RQP. We have also used this
result to prove the same result for FBDDs and a result stated purely in terms of Boolean functions.

As noted earlier, the factor of 2log 'n almost equals n for small values of e. This means that
even if the solution for i-BDD is small, say 3, we cannot find a reasonable approximate answer in
polynomial time - the best we can do is n, the maximum depth of the BDD!

These problems can be linked to other interesting problems in OBDD minimization. For exam-
ple, consider the problem of finding the variable ordering that minimizes the number of nodes at a
specified level i in the OBDD. We formally state this problem here:

OBDD per-level minimization (1-BDD)
Instance: A Boolean function f(xi,X2, ■ ■ -,xn) specified in terms of a data structure of size

polynomial in ra, a level number ?', 1 < i < n.
Problem: To finding an ordering of a?i, £2,..., xn so as to minimize the number of nodes s at

level i in the OBDD for f(x±, x2,..., xn).

1-BDD can be used to solve i-BDD ; more precisely, we can solve an instance of i-BDD for a
function / by solving at most n instances of 1-BDD for /, one for each level in the OBDD, starting
with the topmost level. For the instance Ij of 1-BDD corresponding to level j in the OBDD, we
test if the minimum is less than 23~l. If it is, j is the solution for the corresponding instance of
i-BDD . If not, we attempt to solve the next instance of 1-BDD for level j + 1.

The preceding mapping of i-BDD to 1-BDD shows that 1-BDD is NP-complete. We can also
use this mapping to prove that 1-BDD is inapproximable to a factor of 2 — e, for any positive
e. To see this, consider the characteristic function <f) of a binary linear code of minimum distance
greater than 1. The number of nodes at each level in the OBDD for cf> is a power of 2. Thus, the
solution to i-BDD for (f> will be a level i at which the number of nodes nt- < 24-2. If we had a
2 - e approximation algorithm A for 1-BDD , we could always solve this instance i-BDD exactly
to find i, by using A to solve the first i instances of 1-BDD . But this contradicts our result that
i-BDD is NP-complete. Hence we cannot have a 2 — e approximation algorithm for 1-BDD .

However, notice that we have not used the inapproximability of i-BDD anywhere in this argu-
ment. This indicates that it might be possible to use the hardness result for i-BDD proved in this
paper to show a stronger inapproximability result for 1-BDD .

It is less evident how the inapproximability of i-BDD may be used to derive a strong inap-
proximability result for the following OBDD minimization problem.

OBDD Minimization (BDD)
Instance: A Boolean function f(xi,X2,.. .,xn) specified in terms of a data structure of size

polynomial in n.
Problem: Find an ordering of x\, x2,..., xn that minimizes the number of vertices of the cor-

responding OBDD for /(a-'i, a?2i • • • j xn)-

As mentioned earlier, BDD has been proved NP-complete [2], and cannot be approximated to
a constant factor unless P = NP [7]. Several heuristics have been suggested to solve this problem;

however, these do not guarantee any factor of approximation. Given the widespread use of OBDDs,
a poly-logarithmic approximation algorithm for BDD would be very useful in mitigating the size
blowup that is often experienced. On the other hand, an approximation hardness result for BDD
like the one presented for i-BDD in this paper would indicate the futility of searching for an
algorithm that works for all kinds of Boolean functions. We believe the results of this paper
represent a first step in investigating these problems.

Acknowledgments

Discussions with John Lafferty were helpful in refining our paper. We also gratefully acknowledge
Avrim Blum and Sergey Berezin for their suggestions.

References

[1] Sanjeev Arora and Carsten Lund. Hardness of Approximations. In Approximation Algorithms

for NP-hard problems. PWS Publishing Company. 1996.

[2] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-complote.
IEEE Transactions on Computers, 45:993-1002. September 1996.

[3] Randal Bryant. Graph-based Algorithms for Boolean Function Manipulations. IEEE Trans-

actions on Computers. 35:677-691, August 1986.

[4] Randal Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.
ACM Computing Surveys, 24(3):293-318, September 1992.

[5] Ilya Dinner, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum
distance of a linear code. In Proceedings of FOCS 1999, pages 475-485. 1999.

[6] John Lafferty and Alexander Vardy. Ordered Binary Decision Diagrams and Minimal Trellises.
IEEE Transactions on Computers, 48(9):971-986, September 1999.

[7] Detlef Sieling. On the Existence of Polynomial Time Approximation Schemes for OBDD
Minimization. In Proceedings of S'TACSr9S, pages 205-215, 1998.

[8] Alexander Vardy. The Intractability of Computing the Minimum Distance of a Code. IEEE
Transactions on Information Theory, 43:1757-1766, November 1997.

[9] Alexander Vardy. Trellis Structure of Codes. In Handbook of Coding Theory. Vol. II. North-

Holland Press, 1998.

[10] Ingo Wegener. On the complexity of branching programs and decision trees for clique functions.

Journal of the ACM, 35(2):461-471, April 1988.

